Большая охота за реликтовыми нейтрино: Нейтрино — Популярная механика

Подтвердив существование этих реликтовых частиц, наука получит бесценные сведения о совсем юном космосе

Источник: Большая охота за реликтовыми нейтрино: Нейтрино — Популярная механика

  • В статье «В океане плазмы» («ПМ» № 5’2010) мы рассказали, насколько важно для астрономии определение спектральных характеристик фонового микроволнового излучения, которое несет информацию о состоянии мироздания в возрасте 400 000 лет. Однако теоретическая астрофизика и космология утверждают, что задолго до того, как космическое пространство оказалось прозрачным для этих фотонов, оно стало полностью проницаемым для нейтрино, которые тоже перестали рассеиваться на более тяжелых частицах и пустились путешествовать по Вселенной. Это эпохальное событие имело место, когда после Большого взрыва прошло лишь около одной секунды.
  • Хронология юной Вселенной Одна секунда кажется маленьким сроком. Однако для Вселенной секунда, прошедшая с момента Большого взрыва, — это огромный срок, за который успело произойти множество событий. По мере расширения и остывания Вселенной фундаментальные взаимодействия начинают разделяться. Сразу же после планковского момента (10−43 с) отделяется гравитационное взаимодействие. Сильное, слабое и электромагнитное взаимодействия до момента 10−36 с представляют собой единое (это эпоха Великого объединения взаимодействий). После этого отделяется сильное взаимодействие. И наконец, электрослабое взаимодействие разделяется на слабое и электромагнитное
  • Во глубине канадских руд Нейтринная обсерватория SNO расположена в никелевой шахте «Крейтон» (Creighton mine) неподалеку от Сэдбери в канадской провинции Онтарио. Для размещения детектора был выбран уровень 6800 футов (2070 м). Более 2 км скального грунта защищают чувствительный детектор от космических лучей (это эквивалентно примерно 6 км воды). В настоящее время в связи с окончанием эксперимента SNO преобразована в самую глубокую в мире подземную лабораторию SNOLAB.
  • Проблески во тьме «Глаза» детектора — это чрезвычайно чувствительные фотоэлектронные умножители. Почти 9600 таких трубок закреплены на геодезическом каркасе, окружающем акриловую емкость с тяжелой водой. Солнечные нейтрино при попадании в тяжелую воду вызывают ряд реакций, ведущих к появлению электронов, движущихся быстрее скорости света в воде. Это ведет к появлению черенковского излучения, которое и засекают фотоумножители

Изучение почти неуловимых частиц-нейтрино уже давно привлекает внимание ученых. Для их обнаружения глубоко под землей или подо льдом строятся гигантские сооружения — нейтринные обсерватории. Одна из них, нейтринная обсерватория Сэдбери (Sudbury Neutrino Observatory, SNO), предназначалась для исследования нейтрино, порожденных ядерными реакциями на Солнце. Ее детектирующий комплекс был размещен на глубине около 2 км в бывшей шахте в Сэдбери в канадской провинции Онтарио. Он представлял собой 1000-кубометровый акриловый шаровой контейнер диаметром 12 м, наполненный тяжелой водой D2O, содержащей раствор поваренной соли NaCl. Контейнер со всех сторон окружали 9522 фотоумножителя, смонтированные на 17-метровой решетчатой сфере из нержавеющей стали. Весь детектор был погружен в цилиндрическую емкость высотой 30 м, выдолбленную в скальной породе и наполненную обычной водой. Двухкилометровый слой скальных пород защищал детектор от космических лучей, которые могли бы «затмить» слабые сигналы от солнечных нейтрино.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *